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A Simplified PML for Use with
the FDTD Method

Dennis M. Sullivan, Senior Member, IEEE

Abstract—A recent advance in the use of the finite-difference
time-domain (FDTD) method has been the introduction of the
perfectly matched layer (PML) to act as the absorbing bound-
ary condition. This letter suggests using fictitious magnetic and
electric displacement (as opposed to electric field) conductivities
in order to better isolate the PML from the rest of the FDTD
problem. It further describes the implementation for the PML
directly from the FDTD formulation itself. This results in an
analysis that is much easier to understand and to program.

I. INTRODUCTION

HE finite-difference time-domain (FDTD) method [1] has

become one of the most widely used methods of electro-
magnetic simulation [2], [3]. A key issue in the implementation
of the FDTD method, regardless of its application, has always
been the termination of the problem space via absorbing
boundary conditions (ABC). Early approaches included one-
way wave equations [4], [5], outgoing wave annihilators [6],
the Liao theory [7], and the Higdon method [8].

A recent development in ABC’s was Berenger’s perfectly
matched layer (PML) [9], which employed a fictitious, direc-
tionally dependent pair of electric and magnetic conductivities
for the purpose of absorbing outgoing waves and minimizing
the reflection back into the problem space.

This letter suggests a slight modification to the original
Berenger implementation that is different in two ways: first,
it utilizes a fictitious conductivity associated with the electric
displacement, instead of the electric field. The motivation for
using displacement conductivity is that those conductivities
associated with the PML are completely separate from any
electrical conductivity associated with the problem space.
Secondly, it suggests varying the FDTD parameters directly as
the most efficient means of implementing the PML, as opposed
to varying the conductivities or the size of the cells, and then
converting it to FDTD parameters.

II. FORMULATION

Starting with a transformation similar to one first proposed
by Taflove and Brodwin [2]

E=,/2E
#o

Manuscript received August 21, 1995. This research was supported by the
INEL Laboratory Directed Rescarch and Development program under DOE
Idaho Operations Office Contract DE-AC07-941D13223 and by a grant for
supercomputer time from the Numerical Aerodynamic Simulation Group of
NASA.

The author is with the Department of Electrical Engineering, University of
Idaho, Idaho Falls, ID 83402 USA.

Publisher Item Identifier S 1051-8207(96)00911-7.

(1a)

1
Ve

the Maxwell’s equations can now be written as
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The type of formulation in (2) is used because dispersive,
or even nonlinear, properties of the material are all contained
in (2b) (assuming a nonmagnetic material). Numerous ap-
proaches have been taken to solve E from D in (2b), including
the use of Z transforms [10]. However, that is not germane to
the present discussion. What is important is that the dielectric
properties of the material being simulated are expressed in
(2b), regardiess of how complex the material is. It will not
impact the implementation cf the PML in (2a) and (2c).

Of the six differential equations represented within (2a) and
(2c), we will start with only the D and H components in the
z direction
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Berenger’s approach was to introduce fictitious electric and
magnetic directional conductivites and split the £ and H
fields in each direction into sub components, depending on
the direction of the spatial derivative used to calculate it. In
this letter, a slight deviation from the Berenger method will
be made by introducing fictitious conductivites associated with
H and D, instead of H and E
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This is in addition to any “real” conductivity associated with
. the complex portion of e’ (w). Start by putting (4a) in an FDTD
formulation, shown in (5) at the bottom of the page. The
subscript “4” in f)zi refers to that portion of f)z calculated by
the spatial derivative in the x direction. Similarly, the “s” and
“k” refer to the parts of H, that had been calculated by spatial
derivatives of E in the x and z direction.
The time step T is chosen as [2]

T=dz/(2c)
then (4a) and (4d) become
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The PML is formed from the parameters
sty = (1- 700

€0
fi(i+1/2) = (1 —

T -op:(i+ 1/2))
Ho '

In the Berenger formulation, values of op and oy are
increased as one goes further into the PML to give greater
absorption. Therefore, the terms (1 — T - op;/eg) and (1 —
T - omsi/eo) will become increasingly smaller. A “common
sense” stability criterion dictates that these terms cannot go
below zero. Therefore, g4, gj, fi, and fj go from one at the
edge of the PML to zero at the outer boundary of the FDTD
space. For instance, if a PML of n layers were being developed
for the X direction at the lower end (Fig. 1), the values of gi
and fi would be computed as
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Fig. 1. Diagram of the 3-D dielectric sphere problem. The PML layer is four

cells. The dielectric sphere is 20 cells in diameter. The total/scattered field
boundary is five cells from the edge.

The values at the high end would be
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where imax represent the dimension of the array in the z
direction and n is the number of PML cells being used.

The fi values are interleaved among the g7 values because
the H values are interleaved among the D values in the FDTD
method. The values for gj and fj and gk and fk are computed
similarly.

In order to verify the accuracy of the 3-D PML, the
problem illustrated in Fig. 1 was used. The problem space of
30 x 30 x 30 is divided into the total and scattered fields. The
cells are 1-cm cubes. A plane wave is generated at one end and
subtracted out the other side. Therefore, the PML must only
absorb the scattered field. The plane wave is a short gaussian
pulse (0.2 ns), and the resulting frequency response of the

: n—i\? field in the sphere is calculated at several frequencies using
gi(i) =1— ( ) t=0,1,---,n (8a)  a running Fourier transform. The results are then compared
n _ 3 with a Besscl function expansion solution. (This technique has
Fili+1/2) =1 (" -1 5) i=0,1,---,n—1 been used before in [10].) A comparison of the FDTD and the
n Bessel function solution along the incident and transverse axes
(8b) is given in Fig. 2. As can be seen, agreement is excellent.
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Fig. 2. Comparison of FDTD versus Bessel function expansion in calculating
the resulting I field distribution in a lossy dielectric sphere illuminated by a
plane wave. The Yee cells were 1-cm cubed. The sphere had a diameter = 20
cm., relative dielectric constant = 30, conductivity = .3 S$/m. 700 time steps
were used. By using an impulse response and a running Fourier transform,
information at three frequencies 50, 200, and 800 MHz were obtained with one
run. The symbols represent the FDTD values and the lines the Bessel values.

III. COMPARISON WITH BERENGER’S PML

Because the PML described in this letter is implemented
throughout the problem space, it is decidedly computationally
more expensive than Berenger’s method, both in computer
memory requirements and in CPU time requirements.

A. Core Memory

1) Twice as many D field and H field matrices are needed.
2) The parameters gi,97,9k, fi, fj, [k are additionally
needed. However, these are one-dimensional matrices.
For the same number of Yee cells in a 3-D problem, this
results in a 12% increase in core memory requirement.

B. CPU Time

There is also an additional computational requirement:

1) Because each D field is split, the computation needed
for the calculation of the D field is doubled.

2) The H field is also split, but each computation is the
derivative of the E field in one direction instead of
two. Therefore, twice as many difference calculations
are needed, but each is less computationally intense.

This PML will add to the computational requirements
slightly because the computations of the D and H fields are
split. It results in a 20% increase in CPU time.

In contrast, Berenger’s PML has little additional memory
and time requirements because it is only implemented around
the boundaries.

IV. DISCUSSION

This simplified method has the following advantages:

1) No special treatment is needed in the PML as opposed
to the rest of the FDTD problem space. The values of
g%,97, fi, and fj are just one in the FDTD problem
space. Therefore, dispersive or even nonlinear materials
can be modeled by (3b).

2) It is easier to formulate the PML because the values of
9%, 97, fi, and fj are computed directly. It is not neces-
sary to determine corresponding fictitious conductivities.

As pointed out in the previous section, this PML is compu-
tationally less efficient than Berenger’s. In this method, the
emphasis is place on ease of use, particularly in lossy or
dispersive background media. Whether or not this justifies the
increase in computer resources is for the user to decide.
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