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A Simplified PML for Use with

the FDTD Method
Dennis M. Sullivan, Senior Member, IEEE

Abstract-A recent advance in the use of the finite-difference

time-domain (FDTD) method has been the introduction of the
perfectly matched layer (PML) to act as the absorbing bound-

ary condition. This letter suggests using fictitious magnetic and

electric displacement (as opposed to electric field) conductivities
in order to better isolate the PML from the rest of the FDTD

problem. It further describes the implementation for the PML

directly from Ithe FDTD formulation itseif. This results in an
analysis that is much easier to understand and to program.

I. NTRODUCTION

T HE finite-difference time-domain (FDTD) method [1] has

become cme of the most widely used methods of electro-

magnetic simulation [2], [3]. A key issue in the implementation

of the FDTD method, regardless of its application, has always

been the termination of the problem space via absorbing

boundary conditions (ABC). Early approaches included one-

way wave equations [4], [5], outgoing wave annihilators [6],

the Liao theory [7], and the Higdon method [8].

A recent development in ABC’s was Berenger’s perfectly

matched layer (PML) [9], which employed a fictitious, direc-

tionally dependent pair of electric and magnetic conductivities

for the purpose of absorbing outgoing waves and minimizing

the reflection back into the problem space.

This letter suggests a slight modification to the originai

Berenger implementation that is different in two ways: first,

it utilizes a fictitious conductivity associated with the electric

displacement, instead of the electric field. The motivation for

using displacement conductivity is that those conductivities

associated with the PML are completely separate from any

electrical conductivity associated with the problem space.

Secondiy, it suggests varying the FDTD parameters directiy as

the most efiici ent means of implementing the PML, as opposed

to varying the conductivities or the size of the cells, and then

converting it to FDTD parameters.

IL FORMULATION

Starting with a transformation similar to one first proposed

by Taflove and Brodwin [2]
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the Maxwell’s equations can now be written as

(2a)

D(LJ)= +(w). E(k)) (2b)

f3H 1—= ——
at =

VXE. (2C)

The type of formulation in (2) is used because dispersive,

or even nonlinear, properties of the materiai are all contained

in (2b) (assuming a nonmagnetic material). Numerous ap-

proaches have been taiwn to solve E from D in (2b), including

the use of Z transforms [10] ~~However, that is not germane to

the present discussion. ‘What is important is that the dielectric

properties of the material being simulated are expressed in

(2b), regardless of how complex the materiai is. It will not

impact the implementation clf the PML in (2a) and (2c).

Of the six differential equations represented within (2a) and

(2c), we will start with only the D and H components in the

z direction

(3a)

Berenger’s approach was to introduce fictitious electric and

magnetic directional conductivites and split the E and H
fields in each direction into sub components, depending on

the direction of the spatial derivative used to caiculate it. In

this letter, a slight deviation from the Berenger method will

be made by introducing fictitious conductivites associated with

H and D, instead of H and E

b.. + D.. = E;(w) ‘ -E. (’c)

(4d)

(4e)
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This isin addition to any “real” conductivity associated with

the complex portion of et (w). Start by putting (4a) in an FDTD

formulation, shown in (5) at the bottom of-the page. The

subscript “i” in Dz~ refers to that portion of Dz calculated by

the spatial derivative in the x direction. Similarly, the “i” and

“k” refer to the parts of Hv that had been calculated by spatial

derivatives of E in the z ‘and z direction.

The time step T is chosen as [2]

T = dz/(2 . CrJ)

then (4a) and (4d) become

fiy’(i,j> k + 1/2)

= gz(i) . bg~(z, j, ~ + 1/2)

‘+’/2(i + l/2,j, k + 1/2)+ 0.5. (Hgi

_ ~~+vz(~ – l/2, j, k + 1/2)

+ L&q+ l/2,j, k + 1/2)

– H;:lqi – l/2, j, k + 1/2)

jy~+vz(~ + l/2, j + 1/2, ~)
z?,

= fi(z + 1/2) . H:;1i2

. (i + l/2,j + l/2, k)

–0.5 . (Z; (i+ l,j+

– E&(z, j + l/2, k)).

1/2, k)

The PML is formed from the parameters

( T . a~i(i)
gi(i) = 1 –

So )

(
fi(i + 1/2) = 1 – T “ ~~~fo+ 1’2)).

(6a)

(6b)

(7a)

(7b)

In the Berenger formulation, values of ~D and ~H are

increased as one goes further into the PML to give greater

absorption. Therefore, the terms (1 – T . rJDi/Eo) and (1 –

T . ffffz/CO) Will become increasingly Smder. A “common

sense” stability criterion dictates that these terms cannot go

below zero. Therefore, gi, gj, ~i, and ~j go from one at the

edge of the PML to zero at the outer boundary of the FDTD

space. For instance, if a PML of n layers were being developed

for the X direction at the lower end (Fig. 1), the values of gi

and fi would be computed as

()gi(i) = 1 – ~ i=o, l,. ... n (8a)

(n-~;”’)

3

fz(z + 1/2) = 1- i=(), l,. ..,l -l.

(8b)
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Fig. 1. “Diagram of the 3-D dielectric sphere problem. The PML layer is four

cells. The dielectric sphere is 20 cells in diameter. The total/scattered field

boundary is five cells from tbe edge.

The values at the high end would be

()
3

n—i
gi(imax – i) =1 – ~ ~=o, l,. ... n

(9a)

j%(znlax - z + 1/2)=1 -
(n-:-”5)3
~=o, l,. ... l–l (9b)

where i ~aX represent the dimension of the array in the x

direction and n is the number of PML cells being used.

The ~fi values are interleaved among the gi values because

the H values are interleaved among the D values in the FDTD

method, The values for gj and fj and gk and ~k are computed

similarly.

In order to verify the accuracy of the 3-D PML, the

probleml illustrated in Fig. 1 was used. The problem space of

30 x 30 x 30 is divided into the total and scattered fields. The

cells are l-cm cubes. A plane wave is generated at one end and

subtracted out the other side. Therefore, the PML must only

absorb the scattered field. The plane wave is a short gaussian

pulse (OI.2 ns), and the resulting frequency response of the E
field in the sphere is calculated at several frequencies using

a running Fourier transform. The results are then compared

with a 13essel function expansion solution. (This technique has

been used before in [10].) A comparison of the FDTD and the

Bessel function solution along the incident and transverse axes

is given in Fig. 2. As can be seen, agreement is excellent,

T . am(i) fj;n(i, j, k + 1/2)
B:j’(z,j, k + 1/2) - m,(i,.i, k + 1/2) +

@

Hn+1i2(i + l/2, j, k + 1/2) – H;i+l/2(i – l/2, j, k + 1/2)

( )[

T
y’1

—— dx

m“ H;:l’2(i + l/2, j, k + 1/2) – Ifvk

1

‘+’/2(i - l/2,j, k + 1/2) o
+

dx

(5)
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Fig. 2. Comparison of’ FDTD versus Bessel function expansion in calculating
the resultiug E field distribution in a 10SSYdielectic sphere illuminated by a
plane wave. The Yee cells were l-cm cubed. The sphere had a diameter = 20
cm., relative dielectric constant = 30, conductivity = .3 S/m. 700 time steps

were used. By using an impulse response and a running Fourier transform,
information at three frequencies 50, 200, and 800 MHz were obtained with one

mn. The symbols represent the FDTD vafues and the lines the Bessel vafues.

III. (COMPARISON WITH BERENGER’S PML

Because the PML described in this letter is implemented

throughout the problem space, it is decidedly computationally

more expensive than Berenger’s method, both in computer

memory requirements and in CPU time requirements.

A. Core Memory

1) Twice as many D field and H field matrices are needed.

2) The parameters gi, gj, gk, f i, fj, fk are additionally

needed. However, these are one-dimensional matrices.

For the same number of Yee cells in a 3-D problem, this

results in a 12% increase in core memory requirement.

B. CPU Time

There is also an additional computational requirement:

1)

2)

Because each D field is split, the computation needed

for the calculation of the D field is doubled.

The H field is also split, but each computation is the

derivative of the E field in one direction instead of

two. Therefore, twice as many difference calculations

are neecied, but each is less computationally intense.

This PML will add to tlhe computational requirements

slightly because the computations of the D and H fields are

split. It results in a 20% increase in CPU time.

In contrast, Berenger’s PML has little additional memory

and time requirements b~cause it is only implemented around

the boundaries.

Ifl. Discussion

This simplified method has the following advantages:

1) No special treatment is needed in the PML as opposed

to the rest of the FDTD problem space. The values of

gi, 9~, ~i, and f~ are just one in the FDTD problem
space. Therefore, dispersive or even nonlinear materials

can be modeled by (3b).

2) It is easier to formulate the PML because the values of

gi, g.j, .fi, and .fj are computed directly. It is not neces-
sary to determine corresponding fictitious conductivities.

As pointed out in the previous section, this PML is compu-

tationally less efficient than Berenger’s. In this method, the

emphasis is place on ease of use, particularly in lossy or

dispersive background media, Whether or not this justifies the

increase in computer resources is for the user to decide.
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